Shahram Pezeshk, Ph.D., P.E., F.ASCE, M.EERI

Senior Consultant

Forensic Services

Memphis

Background

Dr. Shahram Pezeshk holds a bachelor’s degree in Civil Engineering from the University of Illinois Urbana-Champaign, a master’s degree from the University of California, Berkeley, and a Ph.D. degree from the University of Illinois Urbana-Champaign.

Dr. Pezeshk’s interests encompass all phases of earthquake engineering and engineering seismology, in particular, ground motion predictions, site effects, site characterization, hazard analysis, geotechnical seismic survey, vibration monitoring, structural optimization, ground penetrating radars (GPR), and performance-based structural optimization.

Education and Certifications

  • Civil Engineering, Ph.D.: University of Illinois, Urbana (1989)
  • Civil Engineering, M.S.: University of California at Berkeley (1983)
  • Civil Engineering, B.S.: University of Illinois, Urbana (1982)
  • Licensed Professional Engineer: Arkansas, Mississippi, and Tennessee
  • Memberships: West Tennessee Structural Association; American Society of Civil Engineers; Earthquake Engineering Research Institute; President of EERI New Madrid Chapter; Seismological Society of America

Publications

  • Alidadi, N., and S. Pezeshk (2025). “State of the Art: Application of Machine Learning in Ground Motion Modeling,” International Scientific Journal Engineering Applications of Artificial Intelligence, Vol 149, 110534, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2025.110534.
  • Davatgari-Tafreshi, M., S. Pezeshk, and S.S. Bora (2025). “Hybrid empirical ground-motion model for the Alborz region of northern Iran,” Soil Dynamics and Earthquake Engineering, Volume 192, 2025, 109292, ISSN 0267-7261, https://doi.org/10.1016/j.soildyn.2025.109292.
  • Pezeshk, S., and C.V. Camp (2024). “An Explicit Time-Integration Method for Damped Structural Systems, CRC Press,” Structural Dynamic Systems Computational Techniques and Optimization: Computational Techniques, December.
  • Mohsen A., M. Davatgari-Tafreshi, and S. Pezeshk (2024). “Adjusting Central and Eastern United States ground-motion models for use in the Coastal Plain considering the sediment thickness.” Earthquake Spectra 2024; 40 (4): 2669–2691. doi: https://doi.org/10.1177/87552930241258354.
  • Akhani, M., N. Alidadi, and S. Pezeshk (2024). “Application of Metaheuristic Algorithms in Ground Motion Selection and Scaling for Time History Analysis of Structures,” June, Vol. 150, No. 8, ASCE Journal of Structural Engineering, DOI: 10.1061/JSENDH.STENG-13470.
  • Pezeshk, S., M. Davatgari‐Tafreshi, and A. Haji‐Soltani (2024). “Hybrid Empirical Ground‐Motion Models for the Island of Hawaii Based on an Updated Strong Ground‐Motion Database,” Bulletin of the Seismological Society of America 2024; 114 (4): 2186–2201. doi: https://doi.org/10.1785/0120230225.
  • Davatgari-Tafreshi, M., S. Pezeshk, and S.S. Bora (2024). “Empirical models for Fourier amplitude spectrum of ground‑motion calibrated on data from the Iranian plateau,” Bulletin of Earthquake Engineering, Vol. 22, Pages 3845–3874, https://doi.org/10.1007/s10518-024-01876-2.
  • Pezeshk, S., C. Assasollahi, and A. Zandieh (2024). “An Equivalent Point-Source Stochastic Model of the NGA – East Ground-Motion Models,” Earthquake Spectra, 40(2), 1452–1478, https://doi.org/10.1177/875529302312259.
  • Sedaghati, and S. Pezeshk (2024); “Ensemble Region‐Specific GMMs for Subduction Earthquakes,” Seismological Research Letters 2023; 95 (3): 1735–1758. doi: https://doi.org/10.1785/0220230070.
  • Akhani, M., N. Alidadi, and S. Pezeshk (2024). “Teaching-Learning-Based Optimization for Ground Motion Selection,” Advanced Optimization Applications in Engineering, 43-59, Publisher: IGI Global, DOI: 10.4018/979-8-3693-2161-4.ch003.
  • Alidadi, N., and S. Pezeshk (2024). “Ground-Motion Model for Small-to-Moderate Potentially Induced Earthquakes Using an Ensemble Machine Learning Approach for CENA,” Seismol. Soc. Am. 114, 2202–2215, doi: 10.1785/0120230242.
  • Elsayed, A.S., and S. Pezeshk (2024). “Benefits of Performing Site-Specific Ground Motion Response Analysis – A Regional Case Study for Northeast Arkansas,” ASCE IFCEE, https://doi.org/10.1061/9780784485408.04.
  • Cramer, C.H., R.B. Van Arsdale, D. Arellano, S. Pezeshk, S.P. Horton, T. Weathers, N. Nazemi, H. Tohidi, R. Reichenbacher, V. Harrison, R.R. Bhattarai, M. Akhani, K. Bouzeid, and G.L. Patterson (2023). “Seismic and Liquefaction Hazard Maps for Five Western Tennessee Counties,” Seismological Research Letters, 94 (6): 2813–2830. doi: https://doi.org/10.1785/0220230036, 2023.
  • Sedaghati, F. and S. Pezeshk. “Machine learning–based ground motion models for shallow crustal earthquakes in active tectonic regions” (2023). Earthquake Spectra, 39(4):2406–2435, 2023, doi:10.1177/87552930231191759.
  • Assadollahi, C., S. Pezeshk, and K. Campbell (2023). “A seismological method for estimating the long-period transition period TL in the seismic building code.” Earthquake Spectra, 39(2):1037-1057. doi:10.1177/87552930231153673.
  • Kayastha, M. S. Pezeshk, and B. Tavakoli, “Empirical Distance Metrics Relationships and Uncertainties in Seismic Hazard Assessment” (2023). Bulletin of the Seismological Society of America, 113 (3): 1176–1191. doi: https://doi.org/10.1785/0120220193.
  • Pezeshk, S., A. Farhadi, and A. Haji-Soltani. (2022). “A new model for vertical‐to‐horizontal response spectral ratios for Central and Eastern North America,” Bulletin of the Seismological Society of America, April, DOI: https://doi.org/10.1785/0120210241.